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Abstract. This paper develops a generalized formulation of the theory of anti-plane deformations of a linear
elastic solid, the Lamé constants of which depend on a single spatial variable. The generalized theory is applied to
the study of a generalized screw dislocation, a semi-infinite crack and a finite crack located in a halfspace region
where the elastic inhomogeneity is depth dependent. The problems examined in this paper are relevant to the
modelling of cracks located in inhomogeneous geological materials and the study of surface defects associated
with functionally graded materials.
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1. Introduction

Materials which exhibit spatial variability in their mechanical properties are classified as in-
homogeneous materials. Such material inhomogeneities can occur either naturally or could
be introduced artificially. For example, with geomaterials, depositional effects and gravity
stresses can introduce depth dependent inhomogeneities in the constitutive responses. Even
a material such as wood which is often regarded as an orthotropic material is composed of
an inhomogeneous material in the scale of a growth ring. With composites, bonded solids
and functionally graded materials, inhomogeneities can be deliberately introduced to achieve
certain functional requirements [1, 2]. The study of inhomogeneous elastic materials has been
an important aspect of mechanics of solids over the past half-century and the renewal of in-
terest largely stems from potential applications of the theories to geomechanics and advanced
materials engineering. Accounts of developments in the applications of the theory of elasticity
of inhomogeneous materials are given in [3–6].

Although the formal development of the theory of elasticity for inhomogeneous materials
can be approached by assuming that the elasticity parameters are functions of the three spatial
variables, little progress can be made in the application of the resulting equations to problems
of scientific and engineering interest. Therefore attention is usually restricted to the consid-
eration of problems where the elastic inhomogeneity is a function of only a single spatial
variable. In the context of geomechanics, the elastic inhomogeneity which is dependent on a
single spatial variable has been extensively applied to examine geomechanics problems where
the elastic properties vary with depth. Several types of depth-dependent variations have been
examined in the literature; these include half-space problems where the linear elastic shear
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modulus varies either linearly or exponentially with depth. References to these applications
are given in [6]. With functionally graded materials and bonded solids, elastic inhomogeneities
which depend on a single spatial variable can arise due to specialized treatments of the ma-
terial. For example, both continuous and discontinuous variations in the elastic properties of
materials can be introduced by surface treatments (e.g.ion plating, plasma spray coating etc.)
and in the case of bonded solids, elastic inhomogeneities can be introduced as a result of
diffusion of the adherent in the vicinity of the bonded interface [7].

Even with the simplifications provided by restricting the elastic inhomogeneity to a single
spatial variable, attention is rarely focussed on the consideration of problems where both
Lamé constants vary with the spatial variable. In the majority of cases, attention is usually
restricted to situations where the linear elastic shear modulus exhibits a spatial variation [8–
10]. This paper focuses on the application of the theory of elasticity for an inhomogeneous
medium where both the Lamé elastic constantsλ andµ are arbitrary functions of a single
spatial variable. In particular, we examine the application of the resulting theory to the study
of certain anti-plane strain problems occupying all or part of an inhomogeneous elastic half-
space. The methodology used in the formulation and the solution of the resulting equations is
derived from the studies originally developed by Rogers and Spencer [11–13] for the study of
three-dimensional problems dealing with laminated plates. The paper presents a generalized
formulation of the anti-plane strain problem where the Lamé constants are arbitrary functions
of a single spatial variable. The paper develops exact closed-form solutions to problems in-
volving a generalized screw dislocation, a semi-infinite crack undergoing anti-plane shear and
a crack of finite length in a uniform field of anti-plane shear.

2. Formulation

We consider a linearly elastic, isotropic, inhomogeneous material occupying all or part of
the half-spacez > 0, where(x, y, z) are rectangular, cartesian coordinates. The mechanical
inhomogeneity is such that the Lamé elastic constantsλ andµ, or equivalently Young’s mod-
ulusE and Poisson’s ratioν, are specified functions ofz. This dependence onz need not be
continuous, and is subject only to the usual requirement for positive-definiteness of the strain
energy. Referred to(x, y, z) coordinates the components of displacement are denoted byu, v
andw, the components of infinitesimal strain are, typically

exx = u,x , exy = 1
2(u,y +v,x ) (2.1)

andσxx, σxy etc. denote the stress components. Then the linearly elastic stress-strain relations
can be expressed as σxxσyy

σzz

 = λ(z)(u,x +v,y +w,z )
 1

1

1

+ 2µ(z)

 u,x

v,y

w,z

 ,
 σyzσzx
σxy

 = µ(z)
 v,z+w,yw,x +u,z
u,y +v,x

 ,
(2.2)
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(where commas denote differentiation with respect to the indicated variables) or, equiva-
lently, as u,x

v,y

w,z

 = 1+ ν(z)
E(z)

 σxxσyy
σzz

− ν(z)

E(z)
(σxx + σyy + σzz)

 1

1

1

 ,
 v,z+w,yw,x +u,z
u,y +v,x

 = 2(1+ ν(z))
E(z)

 σyzσxx
σxy

 .
(2.3)

The equations of equilibrium, with negligible body forces, are

σxx,x + σxy,y + σxz,z = 0,

σxy,x + σyy,y + σyz,z = 0,

σxz,x + σyz,y + σzz,z = 0.

(2.4)

Further, the strain components must satisfy the strain compatibility equations

Kx ≡ 2eyz,yz − eyy,zz − ezz,yy = 0,

Lx ≡ exx,yz + eyz,xx − ezx,xy − exy,zx = 0
(2.5)

and the four equations derived from (2.5) by cyclic permutation ofx, y andz. In terms of the
stress components, (2.5) are

Kx =
{

2(1+ ν)σyz
E

}
,yz−

{
σyy − ν(σxx + σzz)

E

}
,zz

−
{
σzz − ν(σxx + σyy)

E

}
,yy = 0,

Lx =
{
σxx − ν(σyy + σzz)

E

}
,yz+

{
(1+ ν)σyz

E

}
,xx

−
{
(1+ ν)σzx

E

}
,xy −

{
(1+ ν)σxy

E

}
,zx = 0.

(2.6)

It was shown in [11–16] that these equations have three-dimensional elasticity solutions,
for arbitrary dependence ofλ andµ on z, of the form

u(x, y, z) = u(x, y) + F(z)1(x, y),x +A(z)w(x, y),x +B(z)∇2w(x, y),x ,

v(x, y, z) = v(x, y) + F(z)1(x, y),y +A(z)w(x, y),y +B(z)∇2w(x, y),y ,

w(x, y, z) = w(x, y) +G(z)1(x, y) + C(z)∇2w(x, y),

(2.7)

where∇2 is the two-dimensional Laplacian operator, andu(x, y), v(x, y),w(x, y) satisfy the
classical thin-plate (two-dimensional) equations

∇4w(x, y) = 0; κ11(x, y),x −�(x, y),y +κ2∇2w(x, y),x = 0,

κ11(x, y),y +�(x, y),x +κ2∇2w(x, y),y = 0,
(2.8)
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where

1(x, y) = u(x, y),x +v(x, y),y , �(x, y) = v(x, y),x −u(x, y),y .

It follows from (2.8) that

∇21(x, y) = 0, ∇2�(x, y) = 0.

Equations (2.8) are identical in form with the equations of classical thin-plate laminate theory
(see for example Jones [17], Whitney [18]). However, here the field equations are satisfied
for any values of the constantsκ1 andκ2, whereas in classical laminate theory these constants
take specific values in terms of weighted thorough-plate averages ofλ(z) andµ(z).

The constantκ2 characterizes the coupling between bending and stretching deformations
that arises in an inhomogeneous body. The coefficientsA(z), B(z), C(z), F (z) andG(z) can
be obtained from the solution of the following

{µ(1+A′)}′ = 0,

2µ+ λ(1+G′)+ {µ(F ′ +G)}′ = µκ1,

λ(A+ C′)+ 2µA+ {µ(B ′ + C)}′ = µκ2,

{λ(1+G′)+ 2µG′}′ = 0,

µ(1+ A′)+ {λA+ (λ+ 2µ)C ′
}′ = 0,

(2.9)

where primes denote differentiation with respect toz. Whenλ(z) andµ(z) are specified, all
five coefficients can be determined by consecutive quadratures. The integration constants that
arise, and the constantsκ1 andκ2, can be chosen to satisfy certain boundary conditions. For
example, if the surfacez = 0 of the half-spacez > 0 is traction-free, so that

σxz = 0, σyz = 0, σzz = 0 (z = 0),

then it follows from (2.2) and (2.7) that

λ+ (λ+ 2µ)G′ = 0, λA+ (λ+ 2µ)C′ = 0,

F ′ +G = 0, A′ + 1= 0, B ′ + C = 0,
(2.10)

all at z = 0. It follows from (2.9)1,4,5 that

A = −z+A0, λ(z)+ {λ(z)+ 2µ(z)}G′(z) = 0,

λ(z)A(z)+ {λ(z)+ 2µ(z)}C′(z) = 0, (z > 0),
(2.11)

whereA0 is constant. Then from (2.9)2,3 and (2.10), we have

µ(F ′ +G) =
∫ z

0
{µκ1− (λ+ 2µ)− λG′} dz,

µ(B ′ + C) =
∫ z

0
{µκ2− (λ+ 2µ)A− λC ′} dz,
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and hence, from (2.10)

µ(F ′ +G) = κ1

∫ z

0
µdz − 4

∫ z

0

µ(λ+ µ)
λ+ 2µ

dz,

µ(B ′ + C) = κ2

∫ z

0
µdz − 4

∫ z

0

µ(λ+ µ)A(z)
λ+ 2µ

dz.

(2.12)

In the case of a plate of uniform thickness with traction-free surfaces, it was shown in [15]
that it follows from (2.12) that the constantsκ1 andκ2 assume the values that they take, in
Equations (2.8), in classical laminate theory.

In the case of a half-spacez > 0, the implications of (2.11) depend on the behaviour of the
stress asz→∞. If, for example,σxz andσyz are bounded asz→∞, thenF ′ +G andB ′ +C
are bounded asz→∞. If alsoµ and(λ+ 2µ) remain finite and positive asz→∞ then the
constantsκ1 andκ2 are given by

κ1 = lim
z→∞

{
4
∫ z

0

µ(s) {λ(s)+ µ(s)}
λ(s)+ 2µ(s)

ds
/∫ z

0
µ(s)ds

}
,

κ2 = lim
z→∞

{
−4

∫ z

0

sµ(s) {λ(s)+ µ(s)}
λ(s)+ 2µ(s)

ds
/∫ z

0
µ(s)ds

}
,

provided the limits exist. In particular, ifλ andµ tend to finite limits asz → ∞, thenκ1 is
finite butκ2 is unbounded. It then follows from (2.8) that∇2w(x, y) = 0, which is the case
considered in Sections 3–6.

An alternative, and essentially equivalent, formulation given in [16] expresses the solution
in terms of a ‘stress function’χ(x, y) as follows

σxx = P(z)χ,yy +Q(z)∇2χ + R(z)∇2χ,yy ,

σyy = P(z)χ,xx +Q(z)∇2χ + R(z)∇2χ,xx ,

σxy = −P(z)χ,xy −R(z)∇2χ,xy ,

σzz = M(z)∇2χ,

σxz = K(z)χ,x +J (z)∇2χ,x ,

σyz = K(z)χ,y +J (z)∇2χ,y .

(2.13)

These stress components satisfy the equilibrium, stress-strain and strain-compatibility equa-
tions provided thatχ is a biharmonic function

∇4χ = 0, (2.14)

and that the coefficientsP(z),Q(z), R(z),M(z), J (z),K(z) satisfy

Q(z)+ J ′(z) = 0, K(z)+M ′(z) = 0, K ′(z) = 0,{
P +Q(1− ν)− νM

E

}′
= 0,

{
R(1+ ν)

E

}′′
+
{

2J (1+ ν)
E

}′
+
{
ν(P + 2Q)−M

E

}
= 0, (2.15)

{
P(1+ ν)

E

}′′
+
{

2K(1+ ν)
E

}′
= 0.

184686.tex; 6/08/1998; 14:01; p.5



408 A.J.M. Spencer and A.P.S. Selvadurai

For this system also the six coefficients can be evaluated consecutively by quadratures, and
the integration constants chosen to satisfy appropriate boundary conditions.

Equilibrium, and continuity of displacement, require thatA(z), B(z), C(z), F (z),G(z),
M(z),K(z) and J (z) are continuous functions ofz, even at points whereλ,µ,E and ν
are discontinuous (as in a laminated or layered medium) butP(z),Q(z) andR(z) may be
discontinuous at such points. The appropriate jump conditions are readily established.

In many problems it is convenient to employ cylindrical polar coordinates(r, θ, z) rather
than cartesian coordinates. In terms of(r, θ, z) (2.7) becomes

ur(r, θ, z) = ur(r, θ)+ F(z)1(r, θ),r +A(z)w(r, θ),r +B(z)(∇2w(r, θ)),r ,

uθ(r, θ, z) = uθ(r, θ)+ r−1F(z)1(r, θ),θ

+r−1A(z)w(r, θ),θ +r−1B(z)(∇2w(r, θ)),θ ,

w(r, θ, z) = w(r, θ)+G(z)1(r, θ)+ C(z)∇21(r, θ),

(2.16)

whereur, uθ arer andθ components of displacement respectively, and now

∇2 ≡ ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
, (2.17)

1(r, θ) = ur,r + r−1ur + r−1uθ,θ , �(r, θ) = uθ,r − r−1ur,θ − r−1uθ, (2.18)

whilst ur(r, θ), uθ(r, θ),w(r, θ) are solutions of the thin-plate equations

κ11(r, θ),r −r−1�(r, θ),θ +κ2(∇2w(r, θ)),r = 0,

r−1κ11(r, θ),θ +�(r, θ),r +r−1κ2(∇2w(r, θ)),θ = 0, (2.19)

∇4w(r, θ) = 0,

andκ1, κ2, A(z), B(z), C(z), F (z) andG(z) are as before.
Alternatively, the stress function formulation in cylindrical polar coordinates is

σrr = P(z){r−2χ,θθ +r−1χ,r } +Q(z)∇2χ + R(z){r−2(∇2χ),θθ +r−1(∇2χ),r },
σθθ = P(z)χ,rr +Q(z)∇2χ + R(z)(∇2χ),rr ,

σrθ = −P(z)(r−1χ,θ ),r −R(z){r−1(∇2χ),θ },r , (2.20)

σzz = M(z)∇2χ, σrz = K(z)χ,r +J (z)(∇2χ),r ,

σθz = r−1K(z)χ,θ +r−1J (z)(∇2χ),θ ,

whereχ(r, θ) is any biharmonic function

∇4χ(r, θ) = 0. (2.21)
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3. Generalized anti-plane strain

In this section we consider a sub-class of the solutions described in Section 2, namely defor-
mations in whichw andχ are harmonic functions (and consequently, of course, biharmonic),
andu andv are zero, thus

∇2w(x, y) = 0, ∇2χ(x, y) = 0, u(x, y) = 0, v(x, y) = 0. (3.1)

It then follows from (2.7) that

u(x, y, z) = A(z)w(x, y),x ,

v(x, y, z) = A(z)w(x, y),y ,

w(x, y, z) = w(x, y),

(3.2)

and from (2.13) that

σxx = P(z)χ,yy , σyy = P(z)χ,xx , σxy = −P(z)χ,xy ,
σzz = 0, σxz = K(z)χ,x , σyz = K(z)χ,y ,

(3.3)

with

K ′(z) = 0,

(
P

µ

)′′
+
(

2K

µ

)′
= 0,

{
µ(1+A′)}′ = 0, (3.4)

where we have used the relation

µ = E

2(1+ ν) .

By integrating the first and third of (3.4), we have

K(z) = K0, A(z) = A0 +
∫ z

0

(
µ0

µ
− 1

)
dz, (3.5)

whereK0, µ0 andA0 are constants of integration. For consistency between (3.2) and (3.3), it
is necessary that

K0χ = µ0w, P (z)χ = −2µA(z)w. (3.6)

The choiceK0 = 1 can be made without loss of generality. With this choice

χ = µ0w, P (z) = −2µ

µ0
A(z) = −2µ

µ0

{
A0+

∫ z

0

(
µ0

µ
− 1

)
dz

}
. (3.7)

It is easily confirmed that this expression forP(z) satisfies the second of (3.4).
To summarize, for this class of deformations, the displacement is given by (3.2) and the

stress by

σxx = 2µA(z)w,xx , σyy = 2µA(z)w,yy ,

σxy = 2µA(z)w,xy , σzz = 0,

σxz = µ0w,x , σyz = µ0w,y ,

(3.8)
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wherew(x, y) is any harmonic function andA(z) is given by (3.5).
The standard anti-plane strain theory for a homogeneous material with constant shear mod-

ulus, is recovered by settingA0 = 0 andµ = µ0, which results inA(z) = 0 and leavesσxz
andσyz as the only nonzero stress components.

In many problems of geotechnical interest it is reasonable to assume thatµ tends to a
constant value asz → ∞. Then it is natural to takeµ0 to be this limiting value. Further, the
choice

A0 = −
∫ ∞

0

(
µ0

µ
− 1

)
dz

(provided that the integral is finite) givesA(z) → 0 asz → ∞, and the generalized anti-
plane strain solutions tend asymptotically to the corresponding homogeneous anti-plane strain
solutions asz→∞. For example, if it is supposed thatµ can be described with sufficient
accuracy by an expression of the form

1

µ
= 1

µ0
+
(

1

µ1
− 1

µ0

)
e−γ z, (3.9)

so thatµ = µ1 at z = 0 andµ→ µ0 asz→∞, andγ is a constant, then

A0 = − 1

γ

(
µ0

µ1
− 1

)
and

A(z) = − 1

γ

(
µ0

µ1
− 1

)
e−γ z. (3.10)

In cylindrical polar coordinates (3.8) are

ur(r, θ, z) = A(z)w(r, θ),r , uθ (r, θ, z) = A(z)r−1w(r, θ),θ

w(r, θ, z) = w(r, θ),
σrr = 2µA(z)w(r, θ),rr , σθθ = 2µA(z)

{
r−1w(r, θ),r +r−2w(r, θ),θθ

}
,

σrθ = 2µA(z)(r−1w(r, θ),θ ),r , σzz = 0,

σrz = µ0w(r, θ),r , σθz = µ0r
−1w(r, θ),θ .

(3.11)

4. Generalized screw-dislocation

The mathematical theory of dislocations has been successfully applied to examine a variety
of problems in materials science and geophysics. References to applications in these areas
are given by Nabarro [19], Eshelby [20], Hirth and Lothe [21] and Mura [22]. The article by
Eshelby [20], in particular, gives further references to geophysical applications of the screw
dislocation. The displacement

w = θ(α + β(log r)), ur = 0, uθ = 0, (4.1)

184686.tex; 6/08/1998; 14:01; p.8



Some generalized anti-plane strain problems411

(whereα andβ are constants) describes a screw dislocation in anti-plane strain theory for
homogeneous materials. Ifθ is specified to lie in the range 06 θ < 2π , then (4.1) implies a
discontinuity inw across the initial lineθ = 0.

For an inhomogeneous material withµ = µ(z), the expressions (4.1) generate the dis-
placement and stress fields

ur = A(z)βθ
r
, uθ = A(z)α + β logr

r
, w = θ(α + β log r),

σrr = −2µA(z)
βθ

r2
, σθθ = 2µA(z)

βθ

r2
, σzz = 0,

σrθ = 2µA(z)
(β − α)− β log r

r2
, σrz = µ0

βθ

r
, σθz = µ0

α + β logr

r
.

(4.2)

Thus, unlike the case of a homogeneous material, the discontinuity inw generates a dis-
continuity inur (i.e. an edge dislocation) at the initial line, and there is an essential coupling
between the edge and screw dislocations. Furthermore, there are jumps inσrr andσθθ atθ = 0
that are not present when the material is homogeneous. Also the singularities at the axisr = 0
are of higher order than they are in a homogeneous material. As is usual in the theory of crystal
dislocations, it is necessary to exclude a region in the neighbourhood ofr = 0 to ensure that
the stress and displacement remain finite (Figure 1).

5. A semi-infinite crack

For a homogeneous material, the displacement

w = Kr1/2 sin 1
2θ, ur = 0, uθ = 0 (5.1)

describes the displacement due to a crack lying in the vertical planey = 0, extending from
x = −∞ to its tip on the linex = y = 0, and subject to shear in thez-direction on the plane
y = 0. The only nonzero stress components associated with this deformation are

σrz = 1
2µKr

−1/2 sin 1
2θ, σθz = 1

2µKr
−1/2 cos1

2θ. (5.2)

Thus the crack surfacesθ = ±π are traction-free,σθz has the characteristic inverse square
root tip singularity ahead of the crack onθ = 0, and the crack facesθ = ±π are displaced in
thez-direction relatively to one another. In fracture mechanics terminology, this represents a
‘Mode III’ crack.

For an inhomogeneous elastic material, (5.1) generates the displacement and stress fields

ur = 1
2KA(z)r

−1/2 sin 1
2θ, uθ = 1

2KA(z)r
−1/2 cos1

2θ,

w = Kr1/2 sin 1
2θ,

σrr = −1
2µKA(z)r

−3/2 sin 1
2θ, σθθ = 1

2µKA(z)r
−3/2 sin 1

2θ,

σrθ = −1
2µKA(z)r

−3/2 cos1
2θ, σzz = 0,

σrz = 1
2µ0Kr

−1/2 sin 1
2θ, σθz = 1

2µ0Kr
−1/2 cos1

2θ.

(5.3)
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r

θ

x

y
isotropic inhomogeneous
elastic solid

z

θ
r

x

y

isotropic inhomogeneous
elastic solid

semi-infinite
crack

z

Figure 1. Generalized screw dislocation in an inho-
mogeneous elastic medium.

Figure 2. Semi-infinite crack in an inhomogeneous
elastic solid subjected to shear.

In this problem also there is a coupling between in-plane and anti-plane deformation, be-
cause the expression forur shows that, forA(z) 6= 0, there is a horizontal shear on the
crack face associated with the imposed vertical shear. Alsoσrr andσθθ are discontinuous at
θ = ±π . Furthermore the singularities asr→0 are intensified compared to those that arise
in homogeneous material, so for physically meaningful solutions it is necessary to exclude a
neighbourhood ofr = 0. In the geomechanical context this may not be too serious a restriction
because the concept of a sharp crack is not a very realistic one in a geological material. The
theory does seem to suggest a concentration of strain energy in the vicinity ofr = 0, and
depending onA(z) (and hence on the degree of inhomogeneity), which may have geophysical
implications.

6. Finite-length crack in uniform anti-plane shear field

Several investigators including Kassir [23], Erdoganet al. [24], Craster and Atkinson [25],
Clementset al. [26], Ozturk and Erdogan [27,28] and Selvadurai and Lan [29] have examined
problems related to both mode III and mode I behaviour of cracks in inhomogeneous elastic
media. In these investigations the elastic inhomogeneities are restricted to very simple forms
for the variations ofµ as a function of a single spatial variable.

We now consider a vertical crack of length 2a, lying in the planey = 0 from x = a to
x = −a, in a field of uniform anti-plane shear. For this and many other problems the solution
is most conveniently expressed in terms of a complex variableζ as

w(x, y) = Ref (ζ ), ζ = x + iy. (6.1)

Then, for a homogeneous material

w(x, y) = Ref (ζ ), u = 0, v = 0, (6.2)

and the only nonzero stress components are given by

σxz − iσyz = µf ′(ζ ). (6.3)
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isotropic inhomogeneous
elastic halfspace

crack

z

x

x

y

y

r2
r1

crack

θ1

θ2

θ
r

π
2 − α

Figure 3. A finite length crack in a uniform anti-plane shear field.

For an inhomogeneous material, from (3.8)

u(x, y, z) − iv(x, y, z) = A(z)f ′(ζ ), w(x, y) = Ref (ζ ),

σxx + σyy = 0, σxx − σyy − 2iσxy = 4µA(z)f ′′(ζ ),

σxz − iσyz = µ0f
′(ζ ).

(6.4)

The potential

f (ζ ) = Kζ eiα (6.5)

gives the displacement and stress fields, for a homogeneous material, as

w = K(x cosα − y sinα), σxz = µK cosα, σyz = −µK sinα, (6.6)

and so represents a uniform shear in thez-direction on planes with normal unit vector (cosα,
− sinα,0). For an inhomogeneous material, from (3.8)

w = K(x cosα − y sinα), u = KA(z) cosα, v = −KA(z) sinα,

σxx = 0, σyy = 0, σxy = 0, σxz = µ0K cosα, σyz = −µ0K sinα.
(6.7)

Now disturb this uniform field by introducing a crack in the vertical planey = 0 fromx = −a
to x = a. The appropriate potential is

f (ζ ) = K(ζ 2 − a2)1/2 eiα. (6.8)

Note thatf (ζ ) ∼ Kζ eiα as |ζ | → ∞, so that the uniform field is obtained at large
distances from the crack. It is convenient to introduce polar coordinates(r1, θ1) and(r2, θ2)

with origins at the crack tips, so that

ζ − a = r1 eiθ1, ζ + a = r2 eiθ2, (6.9)
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(see Figure 3). Then for a homogeneous material (6.3) and (6.8) give

w = K(r1r2)1/2 cos(1
2θ1+ 1

2θ2+ α),

σxz = Kµr

(r1r2)1/2
cos(θ + α − 1

2θ1− 1
2θ2),

σyz = − Kµr

(r1r2)1/2
sin(θ + α − 1

2θ1− 1
2θ2),

(6.10)

with the remaining stress and displacement components zero. Hence, unlessα = 0 orα = π ,
w is discontinuous across the crack facesy = ±0 , |x| < a, and the solution represents an
anti-plane shear crack, or a mode III crack in fracture mechanics terminology. In general,σxz
andσyz are also discontinuous across the crack faces.

In the case of an inhomogeneous material, (6.4) and (6.8) give

w = K(r1r2)1/2 cos(1
2θ1+ 1

2θ2+ α),

u = KA(z)r

(r1r2)
1/2

cos(θ + α − 1
2θ1− 1

2θ2),

v = −KA(z)r
(r1r2)1/2

sin(θ + α − 1
2θ1− 1

2θ2),

σxx = −σyy = −2
µA(z)a2K

(r1r2)3/2
cos(α − 3

2θ1− 3
2θ2), (6.11)

σxy = 2
µA(z)a2K

(r1r2)
3/2

sin(α − 3
2θ1− 3

2θ2),

σxz = Kµ0r

(r1r2)1/2
cos(θ + α − 1

2θ1− 1
2θ2),

σyz = − Kµ0r

(r1r2)1/2
sin(θ + α − 1

2θ1− 1
2θ2).

We observe that forA(z) 6= 0, u andv are, in general, also discontinuous across the crack,
and so the anti-plane shear crack (mode III) is, for our inhomogeneous material, coupled to
in-plane opening and shear cracks (modes I and II).

The case of most interest is that in which the crack lies in the shear planes of the underlying
shear field, which corresponds toα = 1

2π . In this case (6.11) becomes

w = −K(r1r2)1/2 sin 1
2 (θ1+ θ2) ,

u = −KA(z)r
(r1r2)1/2

sin(θ − 1
2θ1− 1

2θ2), v = −KA(z)r
(r1r2)1/2

cos(θ − 1
2θ1− 1

2θ2),

σxx = −σyy = −2
µA(z)a2K

(r1r2)
3/2

sin 3
2 (θ1+ θ2) , (6.12)

184686.tex; 6/08/1998; 14:01; p.12



Some generalized anti-plane strain problems415

σxy = 2
µA(z)a2K

(r1r2)3/2
cos3

2 (θ1+ θ2) ,

σxz = − Kµ0r

(r1r2)1/2
sin(θ − 1

2θ1− 1
2θ2), σyz = − Kµ0r

(r1r2)1/2
cos(θ − 1

2θ1− 1
2θ2).

As in the case of the semi-infinite crack, there arer
−3/2
1 andr−3/2

2 order singularities inσxx, σxy
and σxz at the crack tips, which suggests that material inhomogeneities result in the high
concentrations of strain energy in the vicinities of the crack tips whenA(z) 6= 0.

7. Conclusions

The majority of investigations which deal with the mechanics of inhomogeneous elastic solids
focus primarily on rather simplified representations of the elastic inhomogeneity where the
Lamé parameters are either linear or exponential variations of a single spatial variable. These
representations of the elastic inhomogeneity have been extensively applied in the literature in
solid mechanics to the study of crack and contact problems in elasticity. In this paper certain
antiplane problems associated with an inhomogeneous elastic medium are examined. It is
shown that the formulation of this class of problems can be approached in a general fashion
by using the procedures developed by Rogers, Spencer and Mian [11–16] for the study of
problems involving inhomogeneous elastic layered media. The generalized formulation is
used to examine antiplane problems related to generalized screw dislocations, semi-infinite
cracks and cracks of finite length located in inhomogeneous elastic media. The solutions to
these problems are obtained in exact closed form. For example, in the case of anti-plane crack
problems, it is shown that the presence of the axial elastic inhomogeneity introduces additional
coupled modes of crack opening behaviour which are absent in the equivalent anti-plane
problems associated with the crack situated in a homogeneous elastic medium. Furthermore
the singular behaviour at the crack tip is amplified as a result of the elastic inhomogeneity
which suggests the possibility of localization of the strain energy consistent with the nature of
the axial elastic inhomogeneity.
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